Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

Identifieur interne : 000C99 ( Main/Exploration ); précédent : 000C98; suivant : 000D00

Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

Auteurs : Bader Al-Anzi [États-Unis] ; Patrick Arpp [États-Unis] ; Sherif Gerges [États-Unis] ; Christopher Ormerod [États-Unis] ; Noah Olsman [États-Unis] ; Kai Zinn [États-Unis]

Source :

RBID : pubmed:26020510

Descripteurs français

English descriptors

Abstract

An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.

DOI: 10.1371/journal.pcbi.1004264
PubMed: 26020510
PubMed Central: PMC4447291


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.</title>
<author>
<name sortKey="Al Anzi, Bader" sort="Al Anzi, Bader" uniqKey="Al Anzi B" first="Bader" last="Al-Anzi">Bader Al-Anzi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arpp, Patrick" sort="Arpp, Patrick" uniqKey="Arpp P" first="Patrick" last="Arpp">Patrick Arpp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gerges, Sherif" sort="Gerges, Sherif" uniqKey="Gerges S" first="Sherif" last="Gerges">Sherif Gerges</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ormerod, Christopher" sort="Ormerod, Christopher" uniqKey="Ormerod C" first="Christopher" last="Ormerod">Christopher Ormerod</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Olsman, Noah" sort="Olsman, Noah" uniqKey="Olsman N" first="Noah" last="Olsman">Noah Olsman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Control and Dynamical Systems Option, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Control and Dynamical Systems Option, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zinn, Kai" sort="Zinn, Kai" uniqKey="Zinn K" first="Kai" last="Zinn">Kai Zinn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26020510</idno>
<idno type="pmid">26020510</idno>
<idno type="doi">10.1371/journal.pcbi.1004264</idno>
<idno type="pmc">PMC4447291</idno>
<idno type="wicri:Area/Main/Corpus">000C52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C52</idno>
<idno type="wicri:Area/Main/Curation">000C52</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C52</idno>
<idno type="wicri:Area/Main/Exploration">000C52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.</title>
<author>
<name sortKey="Al Anzi, Bader" sort="Al Anzi, Bader" uniqKey="Al Anzi B" first="Bader" last="Al-Anzi">Bader Al-Anzi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arpp, Patrick" sort="Arpp, Patrick" uniqKey="Arpp P" first="Patrick" last="Arpp">Patrick Arpp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gerges, Sherif" sort="Gerges, Sherif" uniqKey="Gerges S" first="Sherif" last="Gerges">Sherif Gerges</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ormerod, Christopher" sort="Ormerod, Christopher" uniqKey="Ormerod C" first="Christopher" last="Ormerod">Christopher Ormerod</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Olsman, Noah" sort="Olsman, Noah" uniqKey="Olsman N" first="Noah" last="Olsman">Noah Olsman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Control and Dynamical Systems Option, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Control and Dynamical Systems Option, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zinn, Kai" sort="Zinn, Kai" uniqKey="Zinn K" first="Kai" last="Zinn">Kai Zinn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Fatty Acids (chemistry)</term>
<term>Gene Deletion (MeSH)</term>
<term>MAP Kinase Signaling System (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Models, Theoretical (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Proteome (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Sirolimus (chemistry)</term>
<term>Software (MeSH)</term>
<term>Systems Biology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides gras (composition chimique)</term>
<term>Algorithmes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Biologie des systèmes (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Logiciel (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Modèles théoriques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéome (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Simulation numérique (MeSH)</term>
<term>Sirolimus (composition chimique)</term>
<term>Système de signalisation des MAP kinases (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fatty Acids</term>
<term>Proteins</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acides gras</term>
<term>Protéines</term>
<term>Saccharomyces cerevisiae</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Cluster Analysis</term>
<term>Computational Biology</term>
<term>Computer Simulation</term>
<term>Gene Deletion</term>
<term>MAP Kinase Signaling System</term>
<term>Models, Genetic</term>
<term>Models, Theoretical</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Proteome</term>
<term>Reproducibility of Results</term>
<term>Software</term>
<term>Systems Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de regroupements</term>
<term>Biologie des systèmes</term>
<term>Biologie informatique</term>
<term>Délétion de gène</term>
<term>Logiciel</term>
<term>Modèles génétiques</term>
<term>Modèles théoriques</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Protéome</term>
<term>Reproductibilité des résultats</term>
<term>Simulation numérique</term>
<term>Système de signalisation des MAP kinases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26020510</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004264</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1004264</ELocationID>
<Abstract>
<AbstractText>An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Al-Anzi</LastName>
<ForeName>Bader</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arpp</LastName>
<ForeName>Patrick</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gerges</LastName>
<ForeName>Sherif</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ormerod</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Olsman</LastName>
<ForeName>Noah</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Control and Dynamical Systems Option, Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zinn</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 NS083874</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005227">Fatty Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005227" MajorTopicYN="N">Fatty Acids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020935" MajorTopicYN="N">MAP Kinase Signaling System</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008962" MajorTopicYN="N">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="N">Systems Biology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26020510</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pcbi.1004264</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-14-01874</ArticleId>
<ArticleId IdType="pmc">PMC4447291</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D720-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23203867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol. 2006;5(4):11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Feb 11;180(3):473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Oct;9(20):4799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19743423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20890-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Feb 18;41(4):480-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4569-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Mar;13(3):847-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014;4:4547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24686408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Jun;197(2):451-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2012;108:303-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Mar;1801(3):222-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 1998 Oct 20;8(20):2839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9873633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Jul;43(7):656-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4221-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2006 Apr;13(3):810-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16706727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1990 Feb;124(2):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2407614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Sep 5;194(5):679-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21875945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2010 Jul 1;110(4):920-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20564191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1990 Jul;10(7):2223-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2198331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Biophys. 2007;49(1):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 11;344(6180):208-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7176-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 May 21;328(5981):1043-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):679-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 3;411(6833):41-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2012 Mar;8(3):796-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22218487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sensors (Basel). 2010;10(6):6195-240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):180-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2009 Dec;5(12):1482-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Feb;37(3):825-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010;4:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20500839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Jul 14;2(7):e88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(7):229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Nov 25;6(11):e292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2012;108:345-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Jun;7(6):666-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2000 Nov 20;85(21):4626-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11082612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2005 Dec;37(6):431-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16691478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):48663-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 29;453(7195):657-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2001 Apr 16;86(16):3682-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 10;403(6770):623-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014;4:4273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24589662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Apr 11;327(5):919-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12662919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):803-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2010 Mar 15;398(2):203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 21;285(21):15663-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Jan;190(1):23-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 20;32(15):3902-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8385991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1465-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Apr;279(4):323-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18214544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 18;285(25):19346-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(8):e12353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2010 Mar;17(3):443-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008;13:2408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Mar 30;3(3):e42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jul 27;406(6794):378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10935628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Sep 11;551(1-3):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12965219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e45049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23071506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jun 4;393(6684):440-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9623998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2011 Dec 01;2:87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2009 Apr 21;257(4):578-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19322936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Sep;5(9):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1974 Oct;6(4):387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4157441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Al Anzi, Bader" sort="Al Anzi, Bader" uniqKey="Al Anzi B" first="Bader" last="Al-Anzi">Bader Al-Anzi</name>
</region>
<name sortKey="Arpp, Patrick" sort="Arpp, Patrick" uniqKey="Arpp P" first="Patrick" last="Arpp">Patrick Arpp</name>
<name sortKey="Gerges, Sherif" sort="Gerges, Sherif" uniqKey="Gerges S" first="Sherif" last="Gerges">Sherif Gerges</name>
<name sortKey="Olsman, Noah" sort="Olsman, Noah" uniqKey="Olsman N" first="Noah" last="Olsman">Noah Olsman</name>
<name sortKey="Ormerod, Christopher" sort="Ormerod, Christopher" uniqKey="Ormerod C" first="Christopher" last="Ormerod">Christopher Ormerod</name>
<name sortKey="Zinn, Kai" sort="Zinn, Kai" uniqKey="Zinn K" first="Kai" last="Zinn">Kai Zinn</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26020510
   |texte=   Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26020510" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020